Задача с решением по численным методам Тема: интерполяционный многочлен

Задание.

X	1	2	4 - 0.1m	6	7
Y	4	8	5	1+n	4

$$m = 9; n = 1$$

- 1) Построить интерполяционный многочлен
- 2) Найти экстремумы этого многочлена
- 3) Найти корни
- 4) Построить график полученного многочлена

Решение.

X	1	2	3.1	6	7
Y	4	8	5	2	4

Построим интерполяционный многочлен в форме Ньютона. Построим таблицу разделенных разностей:

x	У				
1	4				
		$f_{11} - \frac{y_1 - y_0}{y_1 - y_0}$			
		$f_{10} = \frac{y_1 - y_0}{x_1 - x_0}$			
		=		_	
			$\int_{f} f_{11} - f_{10}$		
			$f_{20} = \frac{f_{11} - f_{10}}{x_2 - x_0}$		
2	8	4	=		_
		$f_{11} = \frac{y_2 - y_1}{x_2 - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$		$f_{30} = \frac{f_{21} - f_{20}}{x_3 - x_0}$	
		$\int_{11}^{11} - \frac{1}{x_2 - x_1}$		$-\frac{f_{21}-f_{20}}{}$	
		=		$-\frac{1}{x_3-x_0}$	
			$f_{21} = \frac{f_{12} - f_{11}}{x_3 - x_1}$		
			$\int_{21}^{21} - \frac{1}{x_3 - x_1}$		$f_{40} = \frac{f_{31} - f_{30}}{x_4 - x_0}$
3,1	5	-2,72727	=	0,72533	$\int_{0}^{1} x_{4} - x_{0}$
		$\int_{f} -\frac{y_3 - y_2}{y_3 - y_2}$		$f_{31} = \frac{f_{22} - f_{21}}{x_4 - x_1}$	
		$f_{12} = \frac{y_3 - y_2}{x_3 - x_2}$		$-\frac{f_{22}-f_{21}}{f_{22}}$	
		=	0,42320	$- x_4 - x_1$	-0,10906
			$f - \frac{f_{13} - f_{12}}{f_{13}}$		
			$f_{22} = \frac{f_{13} - f_{12}}{x_4 - x_2}$		
6	2	-1,03448	=	0,07098	
		$f_{13} = \frac{y_4 - y_3}{x_4 - x_3}$			
		$x_4 - x_3$			
] =	0,77807		

Задача скачана с https://www.matburo.ru/ (еще много бесплатных примеров на сайте) ©МатБюро - Решение задач по математике, экономике, статистике, программированию

7	4	2	

Интерполяционный многочлен в форме Ньютона имеет вид:

$$P_n(x) = y_0 + f_{10}(x - x_0) + f_{20}(x - x_0)(x - x_1) + f_{30}(x - x_0)(x - x_1)(x - x_2) + f_{40}(x - x_0)(x - x_1)(x - x_2)(x - x_3)$$

$$P_n(x) = 4 + 4(x - 1) - 3.20346(x - 1)(x - 2) + 0.72533(x - 1)(x - 2)(x - 3.1) - 0.10906(x - 1)(x - 2)(x - 3.1)(x - 6) =$$

$$= -14.96100 + 29.87705x - 12.85194x^2 + 2.04495x^3 - 0.10906x^4$$

1) Найдем экстремумы полученного многочлена:

$$P' = 29.87705x - 25.70388x + 6.13485x^2 - 0.43624x^3$$

Решим уравнение P'(x) = 0 численно.

$$29.87725x - 25.70388x + 6.13485x^2 - 0.43624x^3 = 0$$

Протабулируем функцию $F(x) = 29.87705x - 25.70388x + 6.13485x^2 - 0.43624x^3$, чтобы отделить корни.

x	F(x)
0	29,87705
1	9,87179
2	-0,48119
3	-3,79931
4	-2,70000
5	0,19931
6	2,28119
7	0,92821
8	-6,47705
9	-22,55202

Уравнение F(x) = 0 имеет три корня, $x_1 \in (1; 2), x_2 \in (4; 5), x_3 \in (7; 8)$

При переходе через x_1 и x_3 функция F(x) = P'(x) меняет знак с «+» на «-», точки x_1, x_3 точки максимума, при переходе через x_2 функция F(x) = P'(x) меняет знак с «-» на «+», x_2 - точка минимума.

Уточним корни методом Ньютона.

Для первого корня начальным приближением выберем $x^{(0)} = \frac{1+2}{2} = 1.5$

Дальнейшие приближения будем искать по схеме
$$x^{(k+1)} = x^{(k)} - \frac{F(x^{(k)})}{F'(x^{(k)})}$$

Остановим итерации, когда выполнится условие $d = \left| x^{(k)} - x^{(k-1)} \right| < 10^{-5}$

$F(x) = 29.87705x - 25.70388x + 6.13485x^2$							
	_	-0.43624x	.3				
F'(x)	= -25.70	388 + 12.2	26971x - 1	$1.30871x^2$			
i	i $x^{(i)}$ $f(x)$ $f'(x)$ d						
0	1,5	3,65235	-10,2439				
1	1,856539	0,51054	-7,43548	0,356539			
2	1,925202	0,01733	-6,93283	0,068663			
3	1,927701	0,00002	-6,91476	0,002499			

Задача скачана с https://www.matburo.ru/ (еще много бесплатных примеров на сайте) ©МатБюро - Решение задач по математике, экономике, статистике, программированию

4	1,927704			0,000003
---	----------	--	--	----------

Получили:

 $x_1 \approx 1.92770$

Аналогично найдем приближения остальных корней:

	, ,	1		1
i	$\chi^{(i)}$	f(x)	f'(x)	d
0	4,5	-1,311756	3,008369	
1	4,936036	0,010538	2,973765	0,436036
2	4,932492	-0,000004	2,976052	0,003544
3	4,932493			0,000001

$$x_2 \approx 4.93249$$

i	$x^{(i)}$	f(x)	f'(x)	d
0	7,5	-1,854292	-7,296202	
1	7,245855	-0,230561	-5,509972	0,254145
2	7,204011	-0,005830	-5,232083	0,041844
3	7,202897	-0,000004	-5,224745	0,001114
4	7,202896			0,000001

$$x_3 \approx 7.20290$$

Получим точки экстремума многочлена $P(x) = -14.96100 + 29.87725x - 12.85194x^2 + 2.04495x^3 - 0.10906x^4$:

х	P(x)
1,92770	8,01762
4,93249	0,57583
7,20290	4,09856

2) Найдем корни полученного многочлена численно.

 $P(x) = -14.96100 + 29.87705x - 12.85194x^2 + 2.04495x^3 - 0.10906x^4$ На отрезке [2; 7] корней нет, P(x) > 0

Протабулируем функцию P(x), чтобы отделить корни.

\boldsymbol{x}	P(x)
0	-14,96100
1	4,00000
2	8,00000
7	4,00000
8	1,83900
9	-11,84400

Итак, $x_1 \in (0; 1), x_2 \in (8; 9)$. При $x \in (-\infty; 1.92770)$ функция монотонно возрастает, других корней, кроме x_1 , на интервале быть не может. При $x \in (1.92770; 4.93249)$ функция монотонно убывает, P(4.93249) > 0, на интервале корней нет. При $x \in (4.93249; 7.20290)$ функция монотонно возрастает, P(4.93249) > 0, на интервале корней нет. При $x \in (7.20290; +\infty)$ функция монотонно убывает, других корней, кроме x_2 , на

Задача скачана с https://www.matburo.ru/ (еще много бесплатных примеров на сайте) ©МатБюро - Решение задач по математике, экономике, статистике, программированию

интервале быть не может. Таким образом, многочлен P(x) имеет ровно два действительных корня. Найдем их приближенные значения методом Ньютона

i	х	P(x)	P'(x)	d
0	0,5	-2,986658	18,504292	
1	0,661404	-0,251552	15,433913	0,161404
2	0,677702	-0,002405	15,139309	0,016299
3	0,677861	-0,0000002	15,136451	0,000159
4	0,677861			0,0000000

 $x_1 \approx 0.67786$

i	х	P(x)	P'(x)	d
0	8,5	-2,999944	-13,267232	
1	8,273883	-0,389217	-9,907119	0,226117
2	8,234597	-0,010537	-9,373103	0,039287
3	8,233472	-0,0000085	-9,358034	0,001124
4	8,233471			0,0000009

$$x_2 \approx 8.23347$$

3) Протабулируем функцию P(x):

х	P(x)
0	-14,96100
1	4,00000
2	8,00000
3	5,38257
4	1,87386
5	0,58257
6	2,00000
7	4,00000
8	1,83900
9	-11,84400

Дополнительные точки (экстремумы и корни):

x	P(x)
1,92770	8,01762
4,93249	0,57583
7,20290	4,09856
0,67786	0,00000
8,23347	0,00000

Построим график полученного многочлена:

Задача скачана с https://www.matburo.ru/ (еще много бесплатных примеров на сайте) ©МатБюро - Решение задач по математике, экономике, статистике, программированию

