Математическая теория принятия решений Контрольная работа №4

Задача 14. Используя графический метод, найти решение следующей задачи линейного программирования

$$F(x_1, x_2) = ax_1 + 2x_2 \to \max,$$

$$\begin{cases} x_1 + (b-1)x_2 \le 4b - 3, \\ (2c-1)x_1 + x_2 \le 6c - 2, \\ 3x_1 + 2x_2 \le 11, \\ x_1 \ge 0, x_2 \ge 0. \end{cases}$$

$$a = 5/2, b = 2, c = 4.$$

Решение. Получаем задачу:

$$F(x_1, x_2) = \frac{5}{2}x_1 + 2x_2 \rightarrow \max,$$

$$\begin{cases} x_1 + x_2 \le 5, \\ 7x_1 + x_2 \le 22, \\ 3x_1 + 2x_2 \le 11, \\ x_1 \ge 0, x_2 \ge 0. \end{cases}$$

Построим на плоскости x_1Ox_2 область допустимых решений задачи, ограниченную неравенствами

$$\begin{cases} x_1 + x_2 \le 5, \\ 7x_1 + x_2 \le 22, \\ 3x_1 + 2x_2 \le 11, \\ x_1 \ge 0, x_2 \ge 0. \end{cases}$$

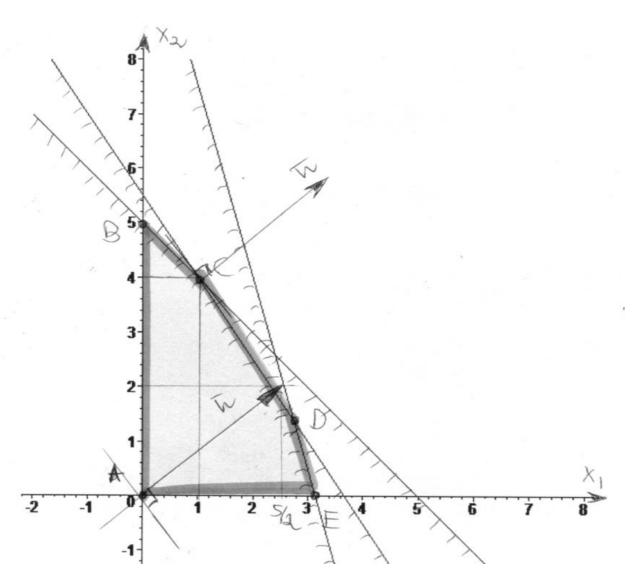
Строим прямые:

- (I) $x_1 + x_2 = 5$, точки (5, 0), (1, 4).
- (II) $7x_1 + x_2 = 22$, точки (2, 8), (3, 1).
- (III) $3x_1 + 2x_2 = 11$, точки (3, 1), (1, 4).

Штриховкой выделяем нужные полуплоскости, соответствующие знакам неравенств.

На пересечении всех полуплоскостей получаем ограниченную выпуклую область *ABCDE* в первой четверти – область допустимых решений задачи.

Контрольная работа по математическому анализу. Выполнена на www.MatBuro.ru ©МатБюро – Решение заданий математики, экономики, программирования Сделаем ваши задания на отлично. Подробнее на сайте



Ищем $F = \frac{5}{2}x_1 + 2x_2 \rightarrow \max$.

Строим линию уровня целевой функции $\frac{5}{2}x_1 + 2x_2 = 0$ и вектор градиента $\overline{n} = \left(\frac{5}{2}, 2\right)$.

Двигаем линию уровня параллельно себе по направлению градиента – направлению возрастания функции (см. рисунок), пока не достигнем крайней точки области.

Видно, что это произойдет в точке C(1;4). Получаем, что максимум целевой функции равен $F_{\max} = F(C) = \frac{5}{2} \cdot 1 + 2 \cdot 4 = \frac{21}{2}$.

Задача 40.

Ниже приведена таблица 7, в которой указаны запасы a_i некоторого груза у поставщиков A_1 , A_2 , A_3 , потребности b_j в этом грузе потребителей B_1 , B_2 , B_3 , а также стоимости (тарифы) c_{11} , c_{12} ,..., c_{33} перевозки единицы этого груза от каждого поставщика каждому потребителю (тариф c_{ij} означает стоимость перевозки единицы груза от поставщика A_i потребителю B_j); величины c_{ij} указаны в некоторых денежных единицах. Составьте оптимальный план перевозок - такой, чтобы все потребители были удовлетворены и при этом стоимость всех перевозок была бы наименьшей.

Задача 40

3	8	6	70	
4	3	5	100	
10	1	2	160	
80	140	110	330	

Решение. Составляем начальную транспортную таблицу с нулевыми перевозками.

Посторини	Потребитель			Запасы
Поставщик	B1	B2	В3	груза
A1	0	8	0	70
A2	0	0 3	5	100
A3	10 0	0	0	160
Потребность	80	140	110	

Транспортная задача имеет *закрытый тип*, так как суммарный запас груза 70+100+160=330 равен суммарным потребностям 80+140+110=330.

Контрольная работа по математическому анализу. Выполнена на www.MatBuro.ru ©МатБюро – Решение заданий математики, экономики, программирования Сделаем ваши задания на отлично. Подробнее на сайте

Найдем опорный план по методу минимального тарифа.

Находим незанятую клетку с минимальным тарифом: (3,2). Помещаем туда меньшее из чисел 160 и 140.

Находим незанятую клетку с минимальным тарифом: (3,3). Помещаем туда меньшее из чисел 20 и 110.

Находим незанятую клетку с минимальным тарифом: (1,1). Помещаем туда меньшее из чисел 70 и 80.

Находим незанятую клетку с минимальным тарифом: (2,1). Помещаем туда меньшее из чисел 100 и 10.

Находим незанятую клетку с минимальным тарифом: (2,3). Помещаем туда меньшее из чисел 90 и 90.

Получили:

Посторущи	Потребитель			Запасы
Поставщик	B1	B2	В3	груза
A1	70	8	6	70
A2	10	3	90	100
A3	10	1 140	20	160
Потребность	80	140	110	

Стоимость перевозок по этому плану равна:

F = 70*3+10*4+90*5+140*1+20*2 = 880.

Будем решать задачу методом потенциалов. Проверяем найденный план на оптимальность. Полагая потенциал U_1 =0, определяем остальные потенциалы из соотношения U_i + V_i = $C_{i,j}$, просматривая все занятые клетки.

Потенциалы:

$$U_1 = 0$$

$$V_1 = C_{1,1} - U_1 = 3$$

$$U_2=C_{2,1}-V_1=1$$

$$V_3 = C_{2,3} - U_2 = 4$$

$$U_3 = C_{3,3} - V_3 = -2$$

$$V_2 = C_{3,2} - U_3 = 3$$

Определяем значения оценок $S_{i,j}=C_{i,j}-(U_i+V_j)$ для всех свободных клеток:

$$S_{1,2} = C_{1,2} - (U_1 + V_2) = 5.$$

$$S_{1,3} = C_{1,3} - (U_1 + V_3) = 2.$$

$$S_{2,2} = C_{2,2} - (U_2 + V_2) = -1.$$

$$S_{3,1} = C_{3,1} - (U_3 + V_1) = 9.$$

Выбираем клетку (2,2) с отрицательной оценкой -1. Строим для нее цикл, помечая клетки цикла знаками "плюс" и "минус".

Контрольная работа по математическому анализу. Выполнена на www.MatBuro.ru
©МатБюро – Решение заданий математики, экономики, программирования
Сделаем ваши задания на отлично. Подробнее на сайте

Поставщик	Потребитель			Запасы
	B1	B2	В3	груза
A1	70	8	6	70
A2	4 10	+ 3	<u>-</u> → 5	100
A3	10	- 140 1	+ 2 20 V	160
Потребность	80	140	110	

Перемещаем по циклу груз величиной в 90 единиц, прибавляя эту величину к грузу в клетках со знаком "плюс" и отнимая ее от груза в клетках со знаком "минус". В результате перемещения по циклу получим новый план:

Поставщик	Потребитель			Запасы
	B1	B2	В3	груза
A1	70	8	6	70
A2	10	90	5	100
A3	10	50	110	160
Потребность	80	140	110	

Стоимость перевозок F = 70*3+10*4+90*3+50*1+110*2=790.

Проверяем найденный план на оптимальность. Полагая потенциал U_1 =0, определяем остальные потенциалы из соотношения U_i + V_j = $C_{i,j}$, просматривая все занятые клетки. Потенциалы:

$$U_1=0$$

$$V_1 = C_{1,1} - U_1 = 3$$

$$U_2=C_{2,1}-V_1=1$$

$$V_2 = C_{2,2} - U_2 = 2$$

$$U_3 = C_{3,2} - V_2 = -1$$

$$V_3 = C_{3,3} - U_3 = 3$$

Определяем значения оценок $S_{i,j}=C_{i,j}-(U_i+V_j)$ для всех свободных клеток:

$$S_{1,2} = C_{1,2} - (U_1 + V_2) = 6.$$

$$S_{1,3} = C_{1,3} - (U_1 + V_3) = 3.$$

$$S_{2,3} = C_{2,3} - (U_2 + V_3) = 1.$$

$$S_{3.1} = C_{3.1} - (U_3 + V_1) = 8.$$

Так как все оценки положительны, то полученный план является оптимальным. Транспортная задача решена. Минимальная стоимость перевозок равна 790.

Контрольная работа по математическому анализу. Выполнена на www.MatBuro.ru
©МатБюро – Решение заданий математики, экономики, программирования
Сделаем ваши задания на отлично. Подробнее на сайте

План перевозок:

$$\begin{pmatrix}
70 & - & - \\
10 & 90 & - \\
- & 50 & 110
\end{pmatrix}$$

Задача 70. Найти решение и цену игры, заданной следующей платежной матрицей:

$$A = \begin{pmatrix} 5 & 9 \\ 13 & 1 \end{pmatrix}$$

Решение. Попробуем найти седловую точку данной платежной матрицы.

Найдем наилучшую стратегию первого игрока: минимальное число в каждой строке обозначим α_i . Получаем: $\alpha_1 = 5$, $\alpha_2 = 1$. Выберем максимальное из этих значений $\alpha = 5$ нижняя цена игры, стратегия A1.

Аналогично для второго игрока. Найдем максимальные значения выигрыша по столбцам: $\beta_1 = 13$, $\beta_2 = 9$ и минимальное из этих чисел $\beta = 9$ - верхняя цена игры, стратегия B2.

Так как верхняя и нижняя цены игры различны, игра не имеет решения в чистых стратегиях (седловой точки нет), цена игры находится в промежутке от 5 до 9 (между нижней и верхней ценой игры).

Решим данную игру аналитическим методом.

Средний выигрыш первого игрока, если он использует оптимальную смешанную стратегию $x^* = \left(x_1^*, x_2^*\right)$, а второй игрок – чистую стратегию, соответствующую первому столбцу платежной матрицы, равен цене игры v:

$$5x_1^* + 13x_2^* = v.$$

Тот же средний выигрыш получает первый игрок, если второй игрок применяет стратегию, соответствующую второму столбцу платежной матрицы, то есть

$$9x_1^* + 1x_2^* = v$$
.

Учитывая, что $x_1^* + x_2^* = 1$, получаем систему уравнений для определения оптимальной стратегии первого игрока и цены игры:

$$\begin{cases} 5x_1^* + 13x_2^* = v, \\ 9x_1^* + x_2^* = v, \\ x_1^* + x_2^* = 1. \end{cases}$$

Решаем эту систему и находим:

$$\begin{cases} 5x_1^* + 13x_2^* = 9x_1^* + x_2^*, \\ 9x_1^* + x_2^* = v, \\ x_1^* = 1 - x_2^*. \end{cases}$$

Контрольная работа по математическому анализу. Выполнена на www.MatBuro.ru ©МатБюро – Решение заданий математики, экономики, программирования Сделаем ваши задания на отлично. Подробнее на сайте

$$\begin{cases} -4(1-x_2^*) + 12x_2^* = 0, \\ 9x_1^* + x_2^* = v, \\ x_1^* = 1 - x_2^*. \end{cases}$$

$$\begin{cases} -4 + 4x_2^* + 12x_2^* = 0, \\ 9x_1^* + x_2^* = v, \\ x_1^* = 1 - x_2^*. \end{cases}$$

$$\begin{cases} x_1^* = 3/4, \\ x_2^* = 1/4, \\ v = 7. \end{cases}$$

Применяя теорему об активных стратегиях при отыскании смешанной стратегии второго игрока, получаем, что при любой чистой стратегии первого игрока средний проигрыш второго игрока равен цене игры, то есть:

$$\begin{cases} 5y_1^* + 9y_2^* = 7, \\ 13y_1^* + y_2^* = 7, \\ y_1^* + y_2^* = 1. \end{cases}$$

$$\begin{cases} 5(1 - y_2^*) + 9y_2^* = 7, \\ y_1^* = 1 - y_2^*. \end{cases}$$

$$\begin{cases} 5 - 5y_2^* + 9y_2^* = 7, \\ y_1^* = 1 - y_2^*. \end{cases}$$

$$\begin{cases} y_2^* = 1/2, \\ y_1^* = 1/2. \end{cases}$$

Отсюда находим $y_1^* = 1/2$, $y_2^* = 1/2$.

Игра решена. Оптимальные смешанные стратегии $X^* = \left(\frac{3}{4}; \frac{1}{4}\right), Y^* = \left(\frac{1}{2}; \frac{1}{2}\right)$, цена игры v = 7.